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perturbation of the fluid interface has an exponential
growthThe Rayleigh–Taylor instability is a gravity driven instability of a

contact surface between fluids of different densities. The growth of
this instability is sensitive to numerical or physical mass diffusion. h(t) 5 h0ent, (1.1)
For this reason, high resolution of the contact discontinuity is partic-
ularly important. In this paper, we address this problem using a
second-order TVD finite difference scheme with artificial compres- whre h is the amplitude at time t, h0 is the initial amplitude,
sion. We describe our numerical simulations of the 3D Rayleigh– and n is the growth rate of the perturbation. The growth
Taylor instability using this scheme. The numerical solutions are rate is a function of the density ratio, viscosity, surface
compared to (a) the exact 2D solution in the linear regime and (b)

tension, and boundary conditions [2].numerical solutions using the TVD scheme and the front tracking
As a second regime, the unstable mode becomes nonlin-method. The computational program is used to study the evolution

of a single bubble and 3D bubble merger, i.e., the nonlinear evolu- ear. It grows into bubbles of light fluid and spikes of heavy
tion of a single mode and the process of nonlinear mode–mode fluid. The bubble motion in this regime was analyzed by
interaction. Q 1996 Academic Press, Inc. Taylor who gave the scaling law

VB 5 CÏAgR (1.2)1. INTRODUCTION

Rayleigh–Taylor instability has attracted the attention for the single mode saturated bubble velocity, where g is
of physicists because of its important role in inertially con- the gravity and R is the bubble radius. The Atwood number
fined nuclear fusion. In the initial state of the Rayleigh– is A 5 (r1 2 r2)/(r1 1 r2), where r1 and r2 are densities
Taylor instability, an interface separates two fluids of dif- of the heavy fluid and the light fluid, respectively. The

constant C has been studied experimentally by Taylor [21]ferent densities. Gravity points from the heavy fluid to the
and analytically by Garabedian [4]. The commonly ac-light fluid across an interface which, in the unperturbed
cepted values of C for incompessible fluids are 0.32 for aconfiguration, is flat. Such a configuration is unstable.
2D bubble and 0.48 for a 3D bubble.When a small perturbation is introduced, the heavy fluid

The interaction among bubbles of different sizes defineswill fall into the light fluid as a spike and the light fluid
the third flow regime and results in competition, merger,will rise into the heavy fluid as a bubble. The single mode
and chaotic mixing. The bubble front envelope is acceler-bubble motion reaches a steady state motion with constant
ated in this regime. Youngs and Read [20, 25] find fromvelocity in a tube or with periodic boundary conditions. A
experiment that the accelerated motion can be expressedrandomly perturbed initial fluid interface produces bubbles
by the formulaof different sizes. Bubbles with large radii advance faster

than those with small radii. Merger occurs when a larger
h 5 agAt2, (1.3)bubble bypasses adjacent smaller ones. The envelope of

the bubble front is accelerated as a result of this bubble
competition. where h is the height of the bubble envelope and t is

There are three regimes of Rayleigh–Taylor instability. time. The coefficient a, according to Youngs, is a constant,
The first regime occurs when the amplitude of a perturba- independent of A. The experimentally measured value of
tion is much smaller than the wavelength. In this case, the a is about 0.06 for incompressible flow.

Recently, scientists have attempted to simulate chaoticfluid motion can be analyzed by linear theory; a small
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mixing through direct numerical solution of the Euler In 3D, the equations can be written in the conserva-
tion formequations in both 2D and 3D. Youngs [26, 27] used a

finite difference method to solve both 2D and 3D Euler
equations. In his simulation, it is found that the accelera- qt 1 F 1

x 1 F 2
y 1 F 3

z 5 H (2.4)
tion rate a is about 0.04, which is more than 30% smaller
than the value measured in experiment. However, 2D sim- where q is a vector, and F 1, F 2, F3 are the flux functions
ulations using the front tracking method [10, 8] give close in the x, y, and z directions, respectively, and H is the
agreement with experiment. Tryggvason also reported source vector, namely,
good agreement with experiment using his front tracking
code for incompressible fluids [22].

Youngs used a second-order TVD van Leer scheme.
The front tracking method uses the MUSCL schemes. But
in the front tracking method, finite difference numerical q 5 1

r

rE

ru

rv

rw

2 , F 1 5 1
ru

ru(E 1 P)

ru2 1 P

ruv

ruw

2 , F 2 5 1
ru

rv(E 1 P)

rvu

rv2 1 P

rvw

2 ,
solvers are applied to different fluid components separately
and the solution at the fluid interface is obtained through
the solution of a Riemann problem in the normal direction
for each front point. Therefore, numerical diffusion of the
fluid density across the density discontinuity has been elim-
inated in the latter method.

Compared to Youngs’ simulation using a TVD van Leer
F 3 5 1

rw

rw(E 1 P)

rwu

rwv

rw2 1 P

2 , H 1 1
0

rwg

0

0

rg

2 .scheme, it is understandable that the front tracking method
gives higher resolution to the solution at the fluid interface
where the density is discontinuous. However, such a

(2.5)

method is more difficult to implement, especially in 3D.
In this paper, we introduce a new method which is a com-
promise between the two methods. The new method is We solve the above equations numerically, by a method

based on Mulder, Osher, and Sethian [16] for simulationbased on a modified TVD scheme with the addition of
artificial compression to the linearly degenerate equation in 2D and extended to 3D by Li [14]. The numerical method

includes a second-order finite difference solver, the levelfor mass conservation. This method significantly improves
the resolution at the contact discontinuity. Although this set method [18] to trace and reconstruct the fluid interface,

and a parallelization algorithm. The major difference be-method is not as highly resolved as the front tracking
method, its implementation is much simpler. tween this paper and the previous paper [14] lies in the

application of a high resolution finite difference schemeWe compare numerical solutions using the front tracking
(FT) method, the TVD scheme, and the TVD scheme with for the contact discontinuity. We mention other interface

enhancing algorithms, such as SLIC [23]; detailed compari-artificial compression (TVD/AC) for two test problems
for which the answers are known. We compare solutions sons are outside of the scope of the present paper.

In the previous paper [14], we used a second-order TVDin the linear regime of the Rayleigh–Taylor instability and
for a single bubble in its terminal velocity regime. We scheme [19]. This scheme is effective for solving problems

of shock wave propagation. In it, physical compressionalso show TVD/AC solutions for the multi-mode chaotic
mixing regime. compensates for the numerical diffusion across a shock

front. However, numerical diffusion still exists when the
characteristics associated with a discontinuous wave do

2. THE MATHEMATICAL MODEL
not converge into it in a shock-line fashion. The contact
discontinuity in the Rayleigh–Taylor instability is not com-The Rayleigh–Taylor instability can be described by the
pressive in this sense. Therefore, if the TVD scheme isEuler equations for compressible fluids:
applied to such a problem, the fluid interface is diffusive.
The initially sharp front becomes smeared-out over an
increasingly wider diffusion zone as time increases. In thisr

t
1 = ? (rv) 5 0 (2.1)

paper, we emphasize that the width of the smeared contact
discontinuity governs the overall accuracy of such compu-v

t
1 (v ? =)v 5 2

=p
r

1 g (2.2) tations as the Rayleigh–Taylor instability and is thus a
significant figure of merit for these computations. From
this point of view, we conclude that the front tracking(rE)

t
1 = ? (rv(E 1 P)) 5 rv ? g (2.3)

method is most desirable for such problems but is more
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difficult to implement in three dimensions due to its com-
plexity. The TVD/AC implementation in 3D is a compro-
mise between the previous work using the level set method
and the front tracking method. For the Rayleigh–Taylor
instability problem, it is a very efficient method with en-
hanced resolution and accuracy.

The mass diffusion of the contact discontinuity is an
important factor which affects the accuracy of the numeri-
cal solution of the Rayleigh–Taylor instability. The impor-
tance of mass diffusion can be demonstrated by both
Youngs’ experimental results and the numerical solution
using resolution-enhancing mechanisms. Youngs reported
his experimental results of the Rayleigh–Taylor instability
with more than two layers of fluids. When a layer of fluid
with an intermediate density is applied, Youngs found that
the acceleration is reduced through the empirical formula:

h 5 0.06(Agt2 2 hD), (2.6)

where D is the width of the intermediate layer and h,
according to Youngs, is a constant. To show the effect
of the intermediate layer, we used the 2D front tracking
method. The results show that when an intermediate layer
is introduced in the Rayleigh–Taylor instability, the termi-
nal velocity of the single bubble is substantially reduced.
Figure 1 presents a comparison of fluid interfaces in simula-
tions with and without intermediate layers.

The new numerical scheme by Jin [13] is based on the
original TVD scheme and the pioneering work of Harten
[12]. This method pays special attention to the contact FIG. 1. Interface plots of 2D simulations using the front tracking

method. The left is a two layer simulation and the right is a simulationdiscontinuity in the numerical simulation. In order to main-
with three layers. On the right, a layer with intermediate fluid density istain the sharp boundary of the contact wave, we follow
placed in the middle while all other physical parameters are unchanged.Harten and Yang [24] and introduce artificial compression The initial width of the intermediate layer is about eight computational

in the TVD scheme. In this way, the linearly degenerate mesh blocks. The numerical simulation shows a significantly slower evolu-
equation of mass conservation behaves as a compressive tion of the bubble, here located at the outside edges of the computational

strip, and moving downward.wave such as a shock wave in the TVD scheme. The details
of this scheme are given in Section 3. We show that TVD/
AC gives much higher resolution than TVD to the interface
in the numerical solution of Rayleigh–Taylor instability.

tracking of the fluid interface introduces an error in theMore importantly, the 2–3 block numerical diffusion in
computation when the equations of state of the two fluidsTVD/AC does not spread further as time increases. This
are different. The discussion of this problem and the suc-behavior is in sharp contrast to TVD, for which the mass
cessful implementation of the 3D front tracking methoddiffusion zone grows wider with increasing time. TVD/AC
have been given in the paper by Glimm et al. [7]. Forthus offers significant improvements over TVD for the
problems such as the shock-contact interaction, the frontsolution of the Rayleigh–Taylor instability. The level set
tracking method tends to give better and more accuratemethod for interface tracing is a postprocessing step and
solutions [11].has no role (other than postcomputation graphical analy-

sis) in the computations presented here, but it could be
3. TVD SCHEME WITH ARTIFICIAL COMPRESSIONused to resolve equation of state issues in mixed material

cells for multi-material. Rayleigh–Taylor simulations.
3.1. Scalar Equations

As with other numerical methods, TVD/AC with the
level set method has its shortcomings and limitations. It Schemes such as TVD and ENO (essentially non-oscilla-

tory) for the finite difference solution of conservation lawsuses about 80% more CPU time than the TVD scheme
to compute the artificial compression. The lack of active have enhanced the resolution of shock waves. However,
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these schemes are not well suited for the study of fluid 0 # ej11/2 # As uau(1 2 luau)(1 2 rj11/2), (3.1.11)
contact discontinuities. Using these schemes, numerical
solutions are increasingly smeared out across a contact where
interface as time advances.

The contact discontinuity occurs in a linearly degenerate
rj11/2 5 MS1,

Dj21/2

Dj11/2
,
Dj13/2

Dj11/2
D . (3.1.12)wave equation. Consider the following scalar linear

wave equation

Thus 0 # rj11/2 # 1. Visc is a viscous term and dissipates
numerical oscillations. In the case of a shock wave, sinceu

t
1 a

u
x

5 0. (3.1.1)
the characteristic field is compressive, the existence of Visc

will not make the transition region grow with increasing
The TVD scheme advances the solution via the equation time. However, in the linear case, the characteristic field

is no longer compressive, and Visc causes the mass diffusion
un11

j 5 un
j 2 l( f n

j11/2 2 f n
j21/2), (3.1.2) region to increase with time. It will therefore seriously

decrease the resolution of the numerical solution. To en-
where f n

j11/2 is the numerically calculated flux hance the resolution, one must compensate for the effect of
Visc . Artificial compression provides such a compensation.

f n
j11/2 5 As (aun

j 1 aun
j11 1 gn

j 1 gn
j11 2 Q(a 1 ln

j11/2)Dn
j11/2), Harten [12] originated the idea of artificial compression.

Yang [24] combined artificial compression and ENO. He(3.1.3)
demonstrated that artificial compression effectively re-
duces numerical diffusion across a contact discontinuity.gn

j 5 M(g̃n
j21/2 , g̃n

j11/2), (3.1.4)
This idea was extended by Jin to the TVD scheme which

g̃n
j11/2 5 As (Q(a) 2 la2)Dn

j11/2 , (3.1.5) we use in this paper. Jin’s method is easy to implement
and is also effective in reducing numerical diffusion across

Dn
j11/2 5 un

j11 2 un
j , (3.1.6)

a contact discontinuity. Artificial compression has no effect
on compressive waves. In smooth regions, the numerical

and M is the minmod function, scheme maintains second-order accuracy.
In the scalar case, in order to eliminate the effect of the

M(x1 , x2 , ..., xn) Visc term, we need to apply Eqs. (3.1.2)–(3.1.5) to (3.1.1):

5 5sign(x1) min(ux1u, ux2u, ..., uxnu), all xi have same sign

0, otherwise.
u
t

1


x
(au 1 L(u)) 5 0, (3.1.13)

(3.1.7) where L(u) is an anti-diffusion term to cancel the Visc .
Equation (3.1.13) is a modified form of Eqs. (3.1.2)–(3.1.5).

Here we have assumed Q(x) 5 uxu, l 5 Dt/Dx, and From this we have a new numerical flux

f n
j11/2 5 As (aun

j 1 aun
j11 1 Ln
j 1 Ln

j11 1 gn
j 1 gn

j11
(3.1.14)c n

j11/2 5 5(gn
j11 2 gn

j )/Dn
j11/2 , Dn

j11/2 ? 0,

0, Dj11/2 5 0.
(3.1.8)

2 Q(a 1 vLM
j11/2 1 c n

j11/2)Dn
j11/2),

whereThe flux term f n
111/2 can be written as the flux in the Lax–

Wendroff scheme plus a viscous term, that is,

vLM
j11/2 5 5(Ln

j11 2 Ln
j )/Dn

j11/2 , Dn
j11/2 ? 0,

0, Dn
j11/2 5 0,

(3.1.15)f111/2 5 f LW
j11/2 1 Visc , (3.1.9)

where f LW
j11/2 5 (a/2) (un

j 1 un
j11) 2 Asla2Dn

j11/2 is the flux in
and the definition of c n

j11/2 is the same as Eq. (3.1.8),a Lax–Wendroff scheme. Also, with Visc given by (3.1.9),
we define ej11/2 through the formula

g̃j11/2 5 As (Q(a 1 vLM
j11/2) 2 l(a 1 vLM

j11/2)2) Dn
j11/2 . (3.1.16)

Visc 5 2ej11/2D
n
j11/2 . (3.1.10)

To preserve all properties of the TVD scheme, we take
Ln

j to be the formFrom this definition, we observe that ej11/2 satisfies
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Ln
j 5 S ? max(0, M(hLn

j21/2 , Ln
j11/2)

(3.1.17)
fj11/2 5

1
2 Sf n

j 1 f n
j11 1 O3

k51
fk

j11/2 ? Rk
j11/2D, (3.2.3)? S, M(Ln

j21/2 , hLn
j11/2) ? S).

fk
j11/2 5 gk

j 1 gk
j11 2 Q(ak

j11/2 1 ck
j11/2)dk

j11/2 , k 5 1, 2, 3,Here S 5 sign(Ln
j11/2) and

(3.2.4)
Ln

j11/2 5 As (Q(a) 2 la2) (Dn
j11/2

(3.1.18) where dk
j11/2 satisfy

2 M(Dn
j21/2 , Dn

j11/2 , Dn
j13/2)).

qn
j11 2 gn

j 5 O3
k51

dk
j11/2 ? Rk

j11/2 (3.2.5)The purpose of h is to keep Ln
j to be of O(Dx2) in an

interval for which the solution is smooth, and to be O(1)
gk

j 5 M(g̃k
j21/2 , g̃k

j11/2), k 5 1, 3, (3.2.6)in an interval of discontinuity. We take h to have the form

g2
j 5 M(g̃k

j21/2 , g̃2
j11/2) 1 Lj (3.2.7)

h 5 2 UuDn
j11/2ub 2 uDn

j21/2ub

uDn
j11/2ub 1 uDn

j21/2ub
U, b 5 2.5. (3.1.19)

g̃k
j11/2 5 As (Q(ak

j11/2) 2 l(ak
j11/2)2) dk

j11/2 , k 5 1, 2, 3,

(3.2.8)
When h P 0 (this occurs when uDn

j21/2u P uDn
j11/2u), the scheme

is the same as the TVD scheme. In this way, we avoid
ck

j11/2 5 5(gk
j11 2 gk

j )/dk
j11/2 , dk

j11/2 5 0,

0, dk
j11/2 ? 0,

(3.2.9)making a smooth solution into a discontinuous one. It can
be proved that the new scheme does not change the order
of accuracy of the TVD scheme. On the other hand, at the
hill and cliff regions of discontinuity where the difference
between uDn

j21/2u and uDn
j11/2u is large, the effect of finite h Q(x) 5 5uxu, uxu . «

1
2«

(x2 1 «2), uxu # «,
(3.2.10)

(therefore finite Ln
j ) will contribute to the flux like a source

term. The extent to which h affects the steepening of the
discontinuity can be adjusted by changing the value of b.

and « is a positive constant generally taken to be between
0.1 to 0.5. Also3.2. One-Dimensional Systems of Equations

The 1D Euler equations have the form Lj 5 S ? max(0, S ? M(hLj21/2 , Lj11/2),
(3.2.11)

S ? M(Lj21/2 , hLj11/2)),q
t

1
 f(q)

x
5 0, (3.2.1)

S 5 sign(Lj11/2),

where q 5 (r, ru, rE), f(q) 5 (ru, p 1 ru2, u(p 1 rE)), Lj11/2 5 As (Q(a2
j11/2) 2 l(a2

j11/2)2)(d2
j11/2

(3.2.12)and r, u, p, E denote density, velocity, pressure, and spe-
2 M(d2

j21/2 , d2
j11/2 , d2

j13/2)),cific energy

h 5 2 Uud2
j11/2ub 2 ud2

j21/2ub

ud2
j11/2ub 1 ud2

j21/2ub
U, b 5 2.5. (3.2.13)E 5

u2

2
1

1
c 2 1

p
r

,

3.3. Three-Dimensional Split Implementation
with c the gas constant.

In 3D, Eq. (2.5) is solved through a TVD scheme with theThe system has three characteristics corresponding to
addition of artificial compression to the linearly degenerateeigenvalues a1 5 u 2 c, a2 5 u, and a3 5 u 1 c, where c
equations. The numerical scheme can be implemented asis the speed of sound. The second characteristic is linearly

degenerate. Using Roe averages, we determine ai
j11/2 and

q* 5 gn 1 DtL(qn),
(3.3.1)

the corresponding eigenvectors Ri
j11/2 , i 5 1, 2, 3. Applying

artificial compression to the linearly degenerate character- qn11 5 gn 1 AsDt(L(qn) 1 L(q*)),
istics, we obtain the finite difference scheme

where L(qn) 5 L1(qn) 1 L2(qn) 1 L3(qn) 1 H(qn). The
qn11

j 5 qn
j 2 l( f n

j11/2 2 f n
j21/2), (3.2.2) functions Ll, l 5 1, 2, 3, are the difference operators for
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the flux in the three coordinate directions. They are the gm
i11/2, jk 5 As uam

i11/2, jk 1 em
i11/2, jku [1 2 luam

i11/2, jk
(3.3.10)second-order TVD scheme with artificial compression. At

1 em
i11/2, jku] dm

i11/2, jk .the node point (xi , yj , zk), the difference operator in the
x-direction can be written

The term Cm
i, jk is the artificial compression. It can be written

[L1(qn)]ijk 5 h1
i11/2, jk 2 h1

i21/2, jk . (3.3.2)
Cm

i, jk 5 sign(Cm
i11/2, jk) max hmind(hCm

i21/2, jk , Cm
i11/2, jk),

(3.3.11)
mind(Cm

i21/2, jk , hCm
i11/2, jk)j,If hRmj5

m51 are the eigenvectors of the Jacobi matrix and
F 1/q and hamj5

m51 are the corresponding eigenvalues, then
where

h1
i11/2, jk 5 As (F1

i, jk 1 F1
i11, jk 2 O5

m51
sm

i11/2, jkRm
i11/2, jk) (3.3.3) Cm

i11/2, jk 5 As uam
i11/2, jku[1 2 luam

i11/2, jku][dm
i11/2, jk

(3.3.12)
2 mind(dm

i21/2, jk , dm
i11/2, jk , dm

i13/2, jk)]
where

(see [12] for further detail), and

em
i11/2, jk 5

Cm
i11, jk 2 Cm

i, jk

dm
i11/2, jk

, nm
i11/2, jk 5

gm
i11, jk 2 gm

i, jk

dm
i11/2, jk

.

(R1, R2, R3, R4, R5) 5 1
1 1 1 0 0

H 2 uc K H 1 uc 2v 2w

u 2 c u u 1 c 0 0

v v v 21 0

w w w 0 21

2 ,
(3.3.13)

Similarly, we can obtain the difference operators in the y
and z directions.

(3.3.4)
4. THE NUMERICAL RESOLUTION OF CONTACT

DISCONTINUITIESH 5 E 1 P/r is the enthalpy, K 5 As(u2 1 v2 1 w2) is
proportional to the kinetic energy, and c 5 Ïc(P/r) is the

We compare numerical Riemann solutions using thesound speed. The eigenvalues of this matrix are
TVD and TVD/AC schemes.

(a1, a2, a3, a4, a5) 5 (u 2 c, u, u 1 c, u, u). (3.3.5) 4.1. Comparison of 1D Numerical Solutions
sm

i11/2, jk 5 gm
i, jk 1 gm

i11, jk 1 Cm
i, jk 1 Cm

i11, jk
(3.3.6) We first consider the scalar equation ut 1 aux 5 0. The

initial condition for u has a jump from 0 to 1. We define2 uam
i11/2, jk 1 nm

i11/2, jk 1 em
i11/2, jkudm

i11/2, jk
Nd to be the total number of mesh blocks lying between
the solution contours u 5 0.1 and u 5 0.9. For the TVDhdm

i11/2, jkj5
m51 satisfy

scheme, the numerical simulation shows that Nd increases
with time. At the 500th time step, Nd has reached the value
11 (see Fig. 2a, case b 5 0.0), while for the TVD/ACqi11, jk 2 qi, jk 5 O5

m51
dm

i11/2, jkRm
i11/2, jk , (3.3.7)

solution with b 5 2.5, Nd grows to a constant value, here
equal to 1.94, for the entire computation. We want to
emphasize that the front tracking method maintains Nd 5where the values at xi11/2, jk are given by Roe’s average

[11], i.e., 0 in the computation. Figure 2b shows the comparison of
the numerical solutions at a fixed time step.

Similar comparisons were performed for systems of
qi11/2, jk 5

Ïri, jkqi, jk 1 Ïri11,jkqi11,jk

Ïri, jk 1 Ïri11, jk

(3.3.8) equations. Figure 3 compares TVD and TVD/AC Rie-
mann solutions for gas dynamics. The graphs show density
vs distance at time step 50. The width of the contact discon-

and tinuity in the TVD scheme is about 7–8 mesh blocks while
it is only about 3–4 blocks for TVD/AC. We should men-

gm
i, jk 5 mind(gm

i21/2, jk , gm
i11/2, jk), (3.3.9) tion that while artificial compression is important in sharp-

ening the contact discontinuity, it also has the tendency to
steepen the rarefaction wave, particularly while the rar-where the function mind is defined as mind(a, b) 5 sign(a)

maxh0, minhsign(b)a, ubujj, and efaction is very steep, at the beginning of its spreading-



FIG. 2. a. The width of numerically smeared-out contact discontinuity (Nd) vs time step (tn). This quantity is derived from the numerical solution
to the scalar equation ut 1 aux 5 0 using the TVD scheme with varying artificial compression parameter b. The width is defined as the number of
mesh blocks between u 5 0.1 and u 5 0.9. The FT case is from the front tracking method. b. Comparison of numerical solutions using the TVD
scheme and the TVD/AC scheme. These are solutions of the equation ut 1 aux 5 0. The graphs are u vs x 2 at. Figures 2a and 2b at the top give
comparison of the TVD solutions with the exact solutions at time steps 50 and 400, respectively. Figures 2c and 2d are solutions from the TVD/
AC scheme at the same time steps 50 and 400, respectively.
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FIG. 3. Comparison of numerical solutions using the TVD scheme and the TVD/AC scheme. The upper two graphs diaplay the numerical
solutions of the TVD scheme and the lower two graphs display solutions of the TVD/AC scheme. The left two graphs present the solutions of the
Riemann problem with (pL , dL , uL) 5 (1, 1, 0) and (pR , dR , uR) 5 (0.1, 0.125, 0). While the right two graphs present solutions of the Riemann
problem with (pL , dL , uL) 5 (3.538, 0.445, 0.698) and (pR, dR , uR) 5 (0.571, 0.5, 0).

out. But its effect on the rarefaction is less serious after The width of the density discontinuity affects the growth
the rarefaction has already spread out. At such time, the rates of the Rayleigh–Taylor instability in the linear re-
change of gradient in density profile is much smaller than gime. Table I shows the comparison of the growth rate of
that at the contact discontinuity. This can be seen by com- the unstable interface using the three methods. In this set
paring the rarefaction part of Riemann solution in Fig. 3a of experiments, the compressibility is M2 5 0.01 and the
and Fig. 3c. Figure 3c shows that artificial compression Atwood number is 0.818 (density ratio 10 : 1). The exact
does not affect the overall accuracy of the rarefaction wave. linear growth rate, 0.846, was calculated through the for-

mulas of [5]. The initial amplitude of the perturbation as
4.2. The 2D Growth Rate of the a function of wavelength is 0.01. We measured the growth

Rayleigh–Taylor Instability rate between t 5 0.1 and t 5 0.2 for all three methods.
For a 128 3 128 computational mesh, the front trackingWe compare the TVD/AC, TVD and front tracking
method gives the highest growth rate and is the closest toschemes for the linear growth rate of a small amplitude
the exact solution with only 1.8% relative error. The errorsingle mode Rayleigh–Taylor instability in two dimen-
in the TVD/AC growth rate is about 3.7% smaller thansions. In these simulations, the front tracking method main-
the exact solution, the TVD error is about 3.8%. Thetains a sharp contact discontinuity with no numerical diffu-
growth rate in TVD/AC is closer to the exact solution thansion across the interface, TVD/AC maintains a steady mass
that of TVD when the computational mesh is coarse whilediffusion zone of 2–3 mesh blocks for the density gradient,
the difference narrows as the mesh becomes finer. Thewhile TVD has a relatively large and growing diffusion

zone. growth rate decreases when the amplitude becomes larger
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TABLE I

Comparison of Linear Growth Rates for the Rayleigh–Taylor
Instability Using Different Numerical Methods

Mesh size nT nA nF eT eA eF

8 3 8 0.602 0.680 0.754 0.288 0.196 0.109
16 3 16 0.720 0.741 0.779 0.149 0.124 0.079
32 3 32 0.756 0.770 0.784 0.106 0.090 0.073
64 3 64 0.798 0.803 0.814 0.057 0.051 0.038

128 3 128 0.814 0.815 0.831 0.038 0.037 0.018
256 3 256 0.834 0.834 0.843 0.014 0.014 0.004

Note. The compressibility in this case is M2 5 0.01 and the Atwood
number is A 5 0.82. The exact linear growth rate is n 5 0.846, nT , nA,
and nF are growth rates from the simulations using TVD, TVD/AC, and
front tracking methods, respectively. eT , eA, and eF are the relative errors
of the three methods eT ,A,F 5 u(nT,A,F 2 n)/nu, respectively.

because of nonlinear effects. The nonlinear solutions them-
FIG. 4. Convergence test of a 2D single bubble interface with theselves were used to determine the time period of validity

TVD/AC scheme. Plot (a) is the fluid interface with a 50 3 150 computa-of the linear (analytic) solution. The measurement of linear
tional mesh; (b) is the fluid interface with a 100 3 300 mesh; (c) is thegrowth rate is a sensitive experiment. The values presented
superposition of the two interfaces. The density ratio is 5 : 3 (A 5 0.25)

in Table I are measured in the time period which we believe and the compressibility is M2 5 0.1.
to be closest to the linear regime.

5. 3D PARALLEL COMPUTATION
OF BUBBLE MOTION

The TVD/AC code is parallelized using a domain de-
composition method to divide the volume into cubic subdo-
mains. See also Li [14]. The program has been tested on
two parallel environments. One is the Intel-iPSC/860 hy-
percube computer at SUNY Stony Brook. The other is a
cluster of 20 SUN stations connected by the software PVM
(parallel virtual machine). The efficiency of the latter is
about 50% due to the data communication overhead
through ethernet.

5.1. Simulation of a Single Bubble

We tested the convergence of a single bubble using the
TVD/AC scheme. Figure 4 shows the fluid interface with
different levels of mesh refinement. We observe that in-
creased mesh refinement adds more detailed structure to
the vortex rollup, but that convergence of the large scale
structure, including the bubble and spike fronts, has been
achieved. The finer scale structure does not converge, in
the sense that new structures appear as the mesh is refined,
unless some stabilizing feature, such as surface tension is
added [6].

FIG. 5. Comparison of the density profile at the fluid interface (spikeFigure 5 compares the resolution of the light–heavy fluid
front) in the Rayleigh–Taylor instability. The four cases in the figureinterface (the spike front) using the TVD/AC scheme with
have different coefficients of artificial compression (b). It is found that

b varying from 0.0 to 3.0. As we can see from the compari- when b $ 2.0, the steepening of the density profile at the interface is
son, after 975 time steps, the b 5 2.0–3.0 cases maintain saturated. In most of the physical simulations reported in this paper we

chose b 5 2.5.a much sharper density front than that of the b 5 0.0 case
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sound speed in the heavy fluid. Table II summarizes the
results of the simulation. Figures 7a and 7b show the 3D
interface evolution with time. The interface is constructed
through the level set function, which traces the motion of
the discontinuity in the simulation. Figures 7c shows cross-
sectional plots of the interface. Frame (i) displays the front
at the bubble cross sections, frame (ii) displays the front
at the spike cross sections, and frame (iii) displays cross
sections in a diagonal direction, cutting both the bubble
and the spike tips. Figure 8, for contrast, shows the effect
of an increase at Atwood number and should be compared
to Fig. 7b. Note that at this larger Atwood number, there
is considerably less roll up at the spike tip, as is to be ex-
pected.

5.2. Simulation of Bubble Merger

Bubble merger is an important process in the Rayleigh–
Taylor instability, leading to the acceleration of the overall
fluid interface with a randomly perturbed initial interface
[9]. We have used our TVD/AC code to simulate bubble

FIG. 6. Comparison of the fluid interfaces in simulations using TVD merger. Figure 9 shows the interface in the simulation of
and TVD/AC schemes, respectively. The plot (i) is the cross section a four bubble interaction. We have studied the acceleration
through spike front; (ii) is the cross section through the bubble front;

of the bubble front under different ratios of bubble radii(iii) is the diagonal cross section through both bubble and spike. The
(the ratio of the largest bubble to the smallest bubble). Insimulation is performed on a 20 3 20 3 80 computational mesh. We

note the close agreement between these simulations, with the TVD bubble a set of experiments with compressibility M2 5 0.1 and
retarded relative to the TVD/AC bubble. Atwood number A 5 0.67, it is found that when such

ratio is about 0.7 : 0.3, the bubble front shows a constant
acceleration throughout the merger process. The average

(original TVD). The sharpening of the contact surface acceleration rate a is about 0.05. While not directly compa-
becomes saturated when b $ 2.5. Therefore, throughout rable to the value a 5 0.06 measured by Read and Youngs
the physical simulation of the Rayleigh–Taylor instability, [20, 25], experimentally, for a random interface with incom-
we choose the value b 5 2.5. Figure 6 is the comparison pressible flow, we note that the acceleration observed here
of the interface for the two methods using the level set is of the expected magnitude.
description. The computational grid is 20 3 20 3 80, which Glimm et al. reported that in the 2D simulation of Ray-
is relatively coarse. The difference between the solutions
by these two methods is decreased by mesh refinement.

We also compare the terminal bubble velocity of the
TABLE IIsingle mode Rayleigh–Taylor instability, as computed by

Average BubbleTerminal Velocity in the 3D Simulation ofthe TVD/AC method. Theoretical and experimental re-
Rayleigh–Taylor Instability Using the TVD/AC Schemesults for the bubble velocity of an incompressible fluid

are given by Taylor [21], Birkhoff and Carter [1], and
A Vb DVb C

Garabedian [4]. The results show that the final velocity
using TVD/AC agrees with these accepted values in the 0.33 0.071 0.008 0.56

0.67 0.089 0.009 0.50incompressible limit within 14%. It should be mentioned
0.82 0.113 0.011 0.55that since we use the rectangular computational domain
0.90 0.120 0.008 0.56with periodic boundaries in both x and y directions, the

geometric configuration is not identical to that assumed in Note. The computational mesh in these simulations is 40 3 40 3 160.
the analytical model, for which the bubble is axisymmetric. The computations were performed on 20 SPARC-LX/SPARC-II stations

using PVM (parallel virtual machine). The compressibility in these simula-Moreover, the computation is slightly compressible, while
tions is M2 5 0.1. DVb is the fluctuation in the velocity measurement,the comparison is incompressible.
due to pressure wave reflections from the boundaries. The agreementThe simulation of a single bubble was performed for
with the comparison value of 0.48 within 14% of C is satisfactory in view

several values of the Atwood number A and a fixed value of the difference in details of the problem formulation from that of the
of compressibility M2 5 0.1, where M2 5 gl/c2

b , l is the analytic/experimental model and in view of the 10% velocity fluctuation,
which limits the precision to which C is determined in this computation.characteristic bubble dimension (diameter), and cb is the
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FIG. 7. a. The time evolution of the 3D triangulated interface. The compressibility is M2 5 0.1, and the Atwood number is A 5 0.333 (density
ratio 2 : 1). The computation uses the TVD/AC scheme with a 40 3 40 3 160 computational mesh. b. Continuation of the 3D interface from Fig.
7a. The left plot is the interface viewed in the bubble periodic section and the right is the same interface offset by a half period, to give the spike
periodic section. Interface with lighting reconstructed by using the 3D graphics software Geomview from University of Minnesota. c. Cross-sectional
plots of the 3D interface in Fig. 7b (t 5 19). Plot (i) is the cross section at the spike front; (ii) is the cross section at the bubble front; (iii) is the
diagonal cross section through both the bubble and the spike.

leigh–Taylor instability using the front tracking method, reported by Glimm et al. The acceleration rate in a run
with compressibility M2 5 0.2 is about 0.054. Again thethe acceleration rate of the bubble envelope increases with

compressibility. This trend has been observed in two addi- acceleration rates are not directly comparable. Further
studies, including mesh refinement and code comparisontional runs with larger compressibility. We have observed

that the acceleration does increase but not to the extent would be needed to refine this analysis.
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6. DISCUSSION

We have extended the TVD/AC numerical scheme to
3D space. The numerical method is parallelized using the
domain decomposition method. We have carried out nu-
merical simulations of single bubble motion and bubble
merger, the first of which has been validated by conver-
gence tests under mesh refinement and by comparison to
the analytic and experimental values.

The TVD scheme for solving the conservation laws of
gas dynamics is diffusive for linearly degenerate waves
such as contact discontinuities. Numerical simulations in
2D show that numerical diffusion of the density in the
TVD scheme retards the motion of the fluid interface in the
Rayleigh–Taylor instability. A new scheme significantly
reduces numerical diffusion by adding artificial compres-
sion to the TVD scheme. This method confines the numeri-
cal diffusion width of the density gradient to 2–3 mesh

FIG. 8. A 3D interface at late time. The compressibility is M2 5 0.1, blocks; moreover, this width does not increase as time
and the Atwood number is A 5 0.6 (density ratio 4 : 1). The computation advances. The new scheme improves the numerical solu-
uses the TVD/AC scheme with a 40 3 40 3 160 computational mesh. tion of the Rayleigh–Taylor instability. The 2D comparison
The left plot is the interface viewed in the bubble periodic section and

among the linear growth rates of the perturbed interfacethe right is the same interface offset by a half period to give the spike
using TVD, TVD/AC, front tracking, and the exact solu-periodic section.
tion shows that the front tracking method, which has a
perfectly sharp density gradient, gives a more accurate
growth rate, especially for a coarse computational mesh.
TVD/AC is better than TVD in the resolution of the con-
tact discontinuity, a fact which is very important in the
accurate simulation of the Rayleigh–Taylor instability. On
the other hand, compared to the front tracking method,
TVD/AC is more efficient to be implemented in three
dimensions. It is also much easier to vectorize and paral-
lelize for computation.
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